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Bandpass filters based on resonant microelectromechanical systems (MEMS) have the

unique advantage of being able to leverage the benefits of classical mechanical filters,

including their high quality factors of resonance, while simultaneously addressing the

challenges associated with manufacturing cost and size, and enabling integrated

benefits of microelectromechanical filters composed of both isolated and coupled

microresonators, the optimality of existing filter architectures, and their associated

performance metrics, is yet to be fully determined. To this end, the current effort seeks

to investigate the relative utility of micromechanical filter designs which exploit a

nontraditional filter architecture founded upon cyclic, elastic coupling. Specifically, the

work seeks to characterize the pertinent performance metrics and robustness

characteristics associated with these systems, and to benchmark the acquired results

against conventional, open-chain filter designs. The work ultimately demonstrates that

MEMS filters based upon cyclic coupling architectures may be beneficially leveraged in

certain filter implementations to improve overall system performance.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The past two decades have seen an increasing drive towards the miniaturization of highly selective, radio-frequency
(RF) and intermediate-frequency (IF) bandpass signal filters. Given the inherent integrability limitations of conventional
mechanical filters, such as those based on quartz crystals and surface acoustic wave (SAW) devices, the signal processing
and wireless communications communities’ research focus has been largely directed towards the development of filters
based on isolated or coupled, resonant microelectromechanical systems (MEMS). As noted in prior literature, these devices
not only offer comparatively high quality factors and appreciable center/cut-off frequencies, but they can also provide
improvements in cost, size, and other filter performance and power metrics (including shape factor and insertion loss),
while simultaneously facilitating seamless integration with other on-chip components [1–10]. To date, the vast majority of
research pertaining to filters based on coupled microresonators has focused on open-chain architectures, wherein the
internal elements of the microresonator array are coupled to their two nearest neighbors, and the terminating (end)
elements are coupled to a single neighbor and an input or output port, as shown schematically in Fig. 1. Prior research in
this area is typified by the works of Nguyen [4], who examined a filter architecture based on two folded-beam, lateral
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Fig. 2. Schematic of a filter based on n resonators coupled in a closed-chain configuration.

Fig. 1. Schematic of a filter based on n resonators coupled in an open-chain configuration.
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comb-driven resonators, and Bannon et al. [5], who considered two capacitively transduced, clamped–clamped beam
resonators. Other efforts in this area have sought to leverage variations in resonator design [6,7], size, transduction [8–12],
and number [13,14] to realize improved filter performance.

In 2002, Greywall and Busch introduced a new class of filters which challenged the optimality of existing designs [10].
These novel filters were founded upon a cyclically coupled (or closed-chain) architecture, in which all of the constituent
microresonators were coupled to their two nearest neighbors, as shown in Fig. 2. The authors analyzed the response of
both open- and closed-chain filters in their work, and demonstrated that in filter implementations in which the number of
resonators in the coupled array was even, the closed-chain filter’s frequency response exhibited a nominally symmetric
passband with less ripple than its open-chain counterpart and reduced inter-band frequency dependence. The authors
attempted to verify this results using electrostatically actuated, silicon nitride drumhead resonators, coupled through
elastic overlap; however, the experimentally recovered frequency response for both of the utilized architectures showed
appreciable ripple and a loss of the predicted degeneracy in the modal frequencies associated with each of the closed-chain
filter designs. This was partially overcome by increasing the ambient pressure until there was sufficient overlap between
the individual resonance peaks exhibited by the system, but the resulting low-ripple passband came at the expense of a
reduced quality factor.

Though Greywall and Busch briefly highlighted the differences between the near-resonant response and associated
metrics of filters based upon open- and closed-chain coupling architectures, their preliminary effort focused more on
proof-of-concept development, than performance characterization and comparison [10]. In light of this, the current work
seeks to build upon the earlier work of Greywall and Busch by developing a more comprehensive understanding of the
relative utility of cyclically coupled resonator architectures in filter design. This is achieved by performing a thorough
analysis of key filter metrics across the entirety of the feasible filter design space and by benchmarking the results acquired
from closed-chain filters against those recovered from conventional, open-chain filter designs. In addition, a brief
robustness analysis is performed to study the sensitivity of open- and closed-chain architectures to local variations in mass
and stiffness, which are inevitably induced in the course of microfabrication. To this end, the paper is organized as follows.
Section 2 details the mathematical modeling and analysis of open- and closed-chain filters. Section 3 summarizes
numerical results recovered through simulation for open- and closed-chain filter designs which span a wide, yet realistic,
range of coupling and dissipation, and details the results of a formal comparison between the various architectures’
performance metrics. Section 4 considers the robustness of closed- and open-chain filters to process-induced variations,
and the work ultimately concludes in Section 5 with a brief discussion and an overview of ongoing analytical and
experimental efforts.

2. System modeling and analysis

To account for the breadth of resonator designs employed in MEMS filters (see, for example, [4–10]), a generic, lumped-
parameter model, which is both transduction and geometry-independent is utilized for analysis. This model, shown
schematically in Fig. 3, incorporates n lumped masses mi, attached to massless linear springs of stiffness ki and viscous
dampers with damping coefficient ci. Adjacent resonators are coupled by weak spring elements of stiffness kc and viscous
dampers with damping coefficient cc. The equation of motion for the ith element of the system shown in Fig. 3 can be
written as

mi €yiþci _yiþkiyiþccð� _yi�1þ2 _yi� _yiþ1Þþkcð�yi�1þ2yi�yiþ1Þ ¼ fiðtÞ, (1)
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Fig. 3. Lumped-parameter model of an elastically coupled resonator chain.
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where fi(t) represents an applied actuation force, which is assumed to be sinusoidal, provided by electrostatic,
electromagnetic or piezoelectric means (Note, the results presented herein can be easily extended to account for
multi-frequency inputs.). Nondimensionalizing this equation through the use of the nominal parameters given in Table 1
results in a final equation of motion for the system given in matrix form by

MocY
00

þCocY0 þKocY¼ FcosðOtÞ, (2)

where the mass, forcing, damping, and stiffness matrices are given, for a four-element, open-chain filter composed of
identical elements, by

Moc ¼

m̂1 0 0 0

0 m̂2 0 0

0 0 m̂3 0

0 0 0 m̂4

2
66664

3
77775, F¼

1

k0y0

f1

f2

f3

f4

2
66664

3
77775,

Coc ¼
1

Q

ĉ1þ ĉ c �ĉc 0 0

�ĉ c ĉ2þ2ĉc �ĉc 0

0 �ĉc ĉ3þ2ĉc �ĉc

0 0 �ĉ c ĉ4þ ĉc

2
66664

3
77775,

Koc ¼

k̂1þ k̂c �k̂c 0 0

�k̂c k̂2þ2k̂c �k̂c 0

0 �k̂c k̂3þ2k̂c �k̂c

0 0 �k̂c k̂4þ k̂c

2
666664

3
777775:

The response of this system can be recovered using classical impedance methods [15], which yield a solution of the form

YðiOÞ ¼ Z�1
oc ðiOÞF, (3)

where

ZocðiOÞ ¼ �O2Mocþ iOCocþKoc (4)

is the system’s impedance matrix.
Fig. 4 shows the amplitude response of an open-chain system composed of six identical resonators with ĉ c ¼ 0,

k̂c ¼ 0:02, and Q=1000 when a unit amplitude force is applied solely to the first resonator in the chain (Given the linear
nature of the system, alternative excitation amplitudes can be considered through the use of output scaling.). Analysis of
this figure reveals that the resonator furthest from the drive (resonator 6) has the smallest amplitude outside the
resonance region. This resonator is used to recover the filtered output. Note that a significant amplitude variation and
asymmetry is observed inside of the resonance region due to the end resonators being coupled to only one resonator, while
the interior constituents are coupled to their two nearest neighbors.

As noted above, in contrast to the open-chain architecture, closed-chain architectures have every element, including the
first and the last, coupled to their two nearest neighbors, as shown schematically in Fig. 2. This results in modified stiffness
and damping matrices which are symmetric and contain equal diagonal elements. For a 4-resonator, closed-chain filter,
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Fig. 4. Amplitude response of a 6-resonator, open-chain filter. Note that the actuation signal is applied only to resonator 1 and the output signal is

measured at each of the respective resonators. Note that a well-formed passband does not exist for the selected set of parameters, this is to further

exemplify key features of the system’s frequency response, including its asymmetry.

Table 1
Parameter definitions.

Parameter Description

o0 ¼

ffiffiffiffiffiffiffi
k0

m0

s
Nominal natural frequency

Q ¼
m0o0

c0

Quality factor of isolated resonator

t¼o0t Nondimensional time

O¼
2o
o0

Nondimensional excitation frequency

ð Þ
0
¼

dð Þ

dt
New derivative operator

m̂i ¼
mi

m0

Nondimensional mass

ĉ i ¼
ci

c0

Nondimensional damping ratio

ĉ c ¼
cc

c0

Nondimensional dissipative coupling ratio

k̂ i ¼
ki

k0

Nondimensional stiffness ratio

k̂c ¼
kc

k0

Nondimensional elastic coupling ratio

ŷ i ¼
yi

y0

Nondimensional displacement
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these matrices become

Ccc ¼
1

Q

ĉ1þ2ĉc �ĉc 0 �ĉ c

�ĉc ĉ2þ2ĉc �ĉc 0

0 �ĉc ĉ3þ2ĉc �ĉc

�ĉc 0 �ĉ c ĉ4þ2ĉc

2
66664

3
77775,

Kcc ¼

k̂1þ2k̂c �k̂c 0 �k̂c

�k̂c k̂2þ2k̂c �k̂c 0

0 �k̂c k̂3þ2k̂c �k̂c

�k̂c 0 �k̂c k̂4þ2k̂c

2
666664

3
777775:
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While the modifications delineated above appear superficial, they have dramatic consequences on the system’s response.
First, due to the symmetry of the impedance matrix ZðiOÞ, the pth undamped natural frequency Op associated with the
system can be recovered in a closed form [16]

Op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2k̂cð1�cosfpÞ

q
, fp ¼

2pðp�1Þ

n
: (5)

Of particular note here is the degeneracy in the natural frequencies caused by the cosine function in the expression above.
This leads to the presence of only n/2+1 distinct natural frequencies when n is even and (n+1)/2 distinct natural
frequencies when n is odd. This trend continues even for damped natural frequencies. Fig. 5 shows the amplitude response
of a closed-chain system consisting of six identical resonators with ĉ c ¼ 0, k̂c ¼ 0:005, and Q=1000, when unit amplitude
forcing is applied to resonator 1. As evident, the response of each of the resonators is nominally symmetric about the center
frequency and contains only four peaks (not six), due to the aforementioned degeneracy. Resonator 4, which features the
largest amplitude within, and the smallest amplitude outside of the resonance region, is the most suitable selection as the
output port for the filter.

Fig. 6 compares the response amplitude and transmissions of 6-resonator open- and closed-chain filters with k̂c ¼ 0:001
and Q=1000, parameters which yield a well-defined passband. From this comparison, it is evident that the closed-chain
filter has the highest response amplitude (highest transmisison/lowest insertion loss), high selectivity, and a nominally
symmetric passband, and thus provides superior filter metrics.

2.1. Bandpass filter specifications

Fig. 7 shows the transmission of a real filter, normalized with respect to the maximum amplitude and expressed in
decibel scale. Note that in this work, transmission is defined as

Transmission ðdBÞ ¼ 20 log10
A

Amax

� �
, (6)

where A is the amplitude of the system’s harmonic response and Amax is its maximum value within the filter passband. The
cut-off frequency is defined at the half-power points or at 3 dB attenuation in the transmission amplitude—see oc1 and oc2

in Fig. 7. The difference between the two cut-off frequencies is defined as the bandwidth; this denotes the frequency span of
the passband of the filter. The frequency at the center of the cut-off frequencies is defined as the center frequency. Quality

factor is defined as the ratio of center frequency to the bandwidth (defined at 3 dB attenuation). To distinguish the quality
factors of the open- and closed-chain filters from that of the individual resonators which compose the filter, the term
effective quality factor (EQF) is used to refer to the quality factor of the composite system. Minimum insertion loss is the
ratio of signal amplitude without the filter installed to the signal amplitude with the filter installed, assuming both unit
amplitude input and a linear relation between the input and the output are utilized. Summarizing these definitions:
�

Fig
out

furt
Bandwidth ¼oc2�oc1,

�
 Center frequency ¼ ðoc1þoc2Þ=2,

�
 EQF ¼ ðoc2þoc1Þ=2ðoc2�oc1Þ,
0
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�

Fig
non
Shape factor (SF) (referenced to 30 dB attenuation) ¼ ðo2�o1Þ=ðoc2�oc1Þ,

�
 Minimum insertion loss (IL) (in dB) ¼ 20 log10ð1=AmaxÞ ¼�20 log10ðAmaxÞ.
In most filter implementations, high effective quality factors, near-unity shape factors, and minimal insertion loss are
desired.

3. The performance of filters composed of identical resonators

As previously noted, the model developed herein is independent of the geometric/structural design of a given filter. As a
result, by assuming that the filter’s constituent resonators and coupling elements are identical and that dissipative
coupling is negligible to first order, a given filter can be parameterized solely by the number of resonators in the array (n),
the elastic coupling coefficient (k̂c), and the isolated resonator’s quality factor (Q). As the relationship between these
parameters and pertinent filter metrics cannot be obtained in a tractable closed form for arbitrary n, numerical
computations are performed over a wide, yet feasible, design space to investigate this dependency. The design space
considered here spans k̂c values from 0.0001 to 0.1 and Q values from 100 to 106 and the filter metrics are evaluated at
121�161 grid points, which are uniformly distributed (in log scale) across the space. The analysis is performed for open-
and closed-chain filters for even n values varying from 6 to 16. Pertinent results are summarized here. In all of the reported
results, it should be noted that the filter designs exhibiting a ripple magnitude in excess of 3 dB within the passband have
been deemed unsuitable for practical implementation (as they induce more than 50 percent signal attenuation). These
points are flagged with dark red color in the contour plots and are omitted from subsequent analysis.

While the relationship between the filter design parameters delineated above and pertinent filter metrics are fairly well
understood for open-chain filter architectures, these relationships are yet to be fully characterized for cyclically coupled
systems. In an attempt to help remedy this deficiency Fig. 8 details the effective quality factor (EQF) metrics associated
with a 6-resonator, closed-chain filter across a reduced parameter space which excludes the region beyond Q=104.5 and
k̂c ¼ 10�1:5, where ripple in excess of 3 dB is present. Not surprisingly, Fig. 8 reveals that higher EQF can be obtained by
minimizing k̂c and maximizing Q. Less intuitive, however, is the fact that the level curve associated with a particular EQF
spans appreciable portions of the feasible design space. Three level curves (constructed from a small subset of data-points)
corresponding to EQFs of 1000, 2000 and 4000, respectively, are shown in Fig. 8. Interestingly, if one traverses these level
curves from point A through E1 to point E10, from point F through J1 to point J10, and from K through O1 to point O10, one
notices both a monotonic decrease in shape factor (referenced to 30 dB) [Fig. 9(a)] and a monotonic decrease in minimum
insertion loss [Fig. 9(b)]. However, the ripple, not present until points E1, J1, and O1 (while traversing from left to right),
increases quite rapidly through points E10, J10 and O10, as shown in Fig. 9(c). Accordingly, for designs founded upon a
particular EQF value, a clear trade-off is observed between shape factor and insertion loss on one hand, and ripple on the
other.

Studying the filter metrics of a 6-resonator closed-chain filter, helps to identify three distinct design regions, which are
highlighted in the contour plot of ripple in Fig. 10:
�
 Region (A) with a single peak in the frequency spectrum: The response in this region features a very broad peak with
high insertion loss. Filters based on (or operating in) this region feature poor frequency selectivity.
. 8. Contour plot depicting the effective quality factor (EQF) for a 6-resonator, closed-chain filter. Note that here, and in the work’s other figures,

dimensional coupling ratio refers to the nondimensional elastic coupling coefficient k̂c .
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Fig. 10. Contour plot depicting the magnitude of ripple (dB) for a 6-resonator, closed-chain filter.
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�
 Region (B) containing two peaks in the frequency spectrum: The response in this region features a ripple between 0 and
3 dB and possesses comparatively superior EQF and SF and minimum IL. However, the presence of ripple results in an
amplitude variation of up to 50 percent in the passband.

�
 Region (C): The response in this region possesses either two or four peaks with a ripple magnitude greater than 3 dB.

Due to the imposed constraint on the ripple magnitude, a filter should not be designed (or operated) in this region.

From the summary above, it is clear that a filter design operating in Region (B) is ideal for attaining superior filter metrics.
This can be achieved through both proper a priori design and post-fabrication Q and k̂c manipulation, accomplished
through tuning and/or packaging.

3.1. Results for higher-order, closed-chain filters

Conventional filter theory dictates that pertinent performance metrics can often be improved by increasing the filter’s
effective order. To this end, numerical simulations similar to those detailed above are repeated for even values of n ranging
from 8 to 16. Recovered filter metrics are then compared at a few distinct points (A–F), which were randomly chosen in the
2D design space, as presented in Fig. 11. It is evident that while the EQF increases and shape factor (referenced to 50 dB
here) and ripple decrease with n, the minimum insertion loss increases drastically with the number of resonators in the
chain. Thus, as in classical filter design, a clear trade-off is observed between filters with higher effective quality factor,
selectivity, and lower ripple on one hand, and an increased insertion loss on the other.

3.2. Comparison of open- and closed-chain filters

In order to develop a clear declaration on the relative utility of cyclically coupled filter designs, it is prudent to
benchmark these devices against their open chain counterparts with both n and n/2+1 resonators (the latter is due to the
degeneracy of the closed-chain architecture’s eigenstructure). Fig. 12 presents a snapshot of this comparison by
highlighting the transmission characteristics of a 16-resonator, closed-chain filter, a 16-resonator open-chain filter, and a
9-resonator, open-chain filter. It is seen that in the open-chain case, starting with the second peak, there is a monotonic
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Fig. 13. Contour plots depicting the difference between the effective quality factors associated with: (a) 6-resonator, open-chain and 6-resonator,

closed-chain and (b) 4-resonator, open-chain and 6-resonator, closed-chain designs.
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decay in the super-imposed ripple, which accentuates with an increase in the number of elements. Though this results in a
smaller bandwidth for higher-order filters, the passband does not encompass the entire resonance region, resulting in
filters with poor selectivity, a nonsmooth transition band, and an asymmetric frequency response. The closed-chain filters,
on the other hand, exhibit a nominally symmetric response (about the center frequency) with higher transmission, and a
bandwidth and ripple magnitude which decrease with additional resonators in the chain. This results in a more selective
filter with a higher quality factor and smooth transition band. As such, for devices composed of identical resonators, while
higher-order filters based on open-chain architecture seem to deviate from the ideal bandpass filter characteristic, the ones
based on closed-chain architecture approach it (refer to Fig. 12)!

Fig. 13 shows the difference in effective quality factor (EQF) for open- and closed-chain filters. The comparison of 6-resonator,
closed-chain is made with 6-, as well as 4-, resonator open-chain designs, see Fig. 13. As evident, open-chain filters offer higher
EQF when compared to their closed-chain counterparts, with the difference being accentuated when comparing with a
6-resonator, open-chain filter design. As noted earlier, for an open-chain, only a portion of the resonance region is contained
within the passband due to its decay with increasing frequency, and thus a narrower bandwidth is obtained. As such, the
difference between an open- and closed-chain filters’ EQF is expected to increase with a higher number of resonators in the
chain.

Fig. 14 shows the difference in 10 dB shape factor (SF) between open- and closed-chain filters. As noted earlier, closed-
chain filters are more selective throughout the design domain and this difference is accentuated when comparing,
6-resonator closed- and open-chain filters. While the difference is comparatively small with very low levels of coupling
and Q, in region B (noted earlier to be the most favorable region to design closed-chain filters) this difference is quite high.
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4. The effect of process-induced variation on filter performance

The simulation results presented in the earlier sections of this work were based on the assumption that all the
resonators, as well as coupling elements, in the open- and closed-chain filter designs are nominally identical and that
resonant frequencies could be specified exactly. However, owing to many practical constraints, such as dimensional and
material property variations, and residual stresses, this is impossible to achieve. Generally speaking, fabrication
uncertainty is regarded as one of the key roadblocks in the commercialization of MEMS devices [17], given that it can lead
to tolerances higher than 710 percent of the nominal design and large deviations in performance [18]. While
post-fabrication laser trimming [18], voltage bias tuning [4,19,20] and localized thermal stressing [21] can be used to
correct for these variations, the cost and the effort involved in individually tuning/trimming renders a need for inherently
robust device designs. This section attempts to quantify the impact of process-induced variations by investigating and
comparing the robustness offered by both open-chain and closed-chain filter architectures. To this end, deviations in the
masses and stiffnesses of the individual resonators are modeled as variations in the nondimensional stiffness ratio k̂i,
elastic coupling ratio k̂c , and mass m̂i and Monte Carlo simulations [22] are performed to characterize performance.

As the elastic coupling ratio k̂c (10�5–10�1) is orders of magnitude smaller than the nondimensional stiffness k̂i and
mass m̂i (nominally equal to unity), a small percentage variation in k̂i or m̂i would overshadow the effect of variations in k̂c .
Accordingly, the effects of process-induced variations are studied in two stages. In the first stage, variations in the elastic



ARTICLE IN PRESS

-4 -3.5 -3 -2.5 -2 -1.5
2

2.5

3

3.5

4

4.5

Nondimensional Coupling Ratio (Log Scale)

Q
 (L

og
 S

ca
le

)

 

 

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-4 -3.5 -3 -2.5 -2 -1.5
2

2.5

3

3.5

4

4.5

Nondimensional Coupling Ratio (Log Scale)

Q
 (L

og
 S

ca
le

)

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fig. 15. (a) Mean percentage error in log scale and (b) normalized standard deviations in BW for 6-resonator, closed-chain filters with 720 percent

random variation in k̂c .
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coupling ratio k̂c are considered independently. In the second stage, the combined effect of variations in k̂i, m̂i, and k̂c is
investigated. Given the stochastic nature of this analysis, simulations are repeated until sufficient convergence is achieved
in both center frequency (CF) and bandwidth (BW). Here the degree of convergence is founded upon the criteria that the
mean percentage error associated with both of these quantities do not vary, across the feasible design space, by more than
0.01 percent (first stage) and 0.5 percent (second stage) of its value with the inclusion of one additional simulation. In both
scenarios, 400 simulations yielded sufficient convergence.

As the focus here is to analyze deviation from a nominal filter design, the results are presented in terms of both mean
percentage error (compared to the nominal case) and normalized standard deviation in the center frequency CF and the
bandwidth BW. These quantities are defined as follows:
�
 Mean error percentage in CF:

Z1ðk̂c ,Q Þ ¼

1

N

PN
i ¼ 1ðCFiÞ�CFnom

����
����

CFnom
� 100 percent,
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Normalized std. deviation in CF:
�
Z2ðk̂c ,Q Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i ¼ 1ðCFi�CFÞ2

r
CF

,

Mean error percentage in BW:
�
Z3ðk̂c ,Q Þ ¼

1

N

PN
i ¼ 1ðBWiÞ�BWnom

����
����

BWnom
� 100 percent,

Normalized std. deviation of BW:
�
Z4ðk̂c ,Q Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i ¼ 1ðBWi�BWÞ2

r
BW

:

Note N is the number of simulations (to be distinguished from the number of resonator in the filter n), CFi and BWi are the
center frequency and bandwidth of ith simulation iteration, and CF and BW are the mean center frequency and bandwidth
values, as computed using the entirety of the Monte Carlo simulation.
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4.1. Variations in k̂c

Fig. 15 highlights the variation in mean percentage error and normalized standard deviation in bandwidth BW
(MEBW and SDBW, respectively) across the design space for a 6-resonator, closed-chain filter with 720 percent
variation in k̂c . From the contour plot, it is seen that the mean error as well as the standard deviations are higher at
design points that are closer to the 3 dB ripple boundary and vary roughly as a product of k̂c and Q. The mean error in
bandwidth (MEBW) is seen to be less than 3.98 percent throughout the feasible design space and the standard
deviation is seen to be less than 0.06 times its nominal value. Vibration localization is evident in the design space (see
Fig. 15), as revealed by the nonuniform and abrupt changes in the mean values at certain locations and inspection of
isolated frequency responses.

Fig. 16 shows the variation in the mean percentage error and normalized standard deviation in center frequency (MECF
and SDCF, respectively) across the feasible design space for a 6-resonator, closed-chain filter with 720 percent variation in
k̂c . Unlike bandwidth, center frequency is primarily a function of k̂c . For a closed-chain filter with an even number of
resonators, it is approximately equal to 1þ k̂c (see [23]). Hence, the error varies primarily as a function of k̂c (see Fig. 16).
The mean error in CF is seen to be less than 0.02 percent throughout the feasible design space with a standard deviation
less than 0.001 times its mean value.

Figs. 17 and 18 present the MEBW and MECF contour plots for 8-, 12- and 16-resonator, closed-chain filters with 720
percent variation in k̂c . The mean errors in bandwidth as well as center frequency are seen to increase significantly for
higher-order, closed-chain filters. For example, at 720 percent variation in k̂c , while the maximum mean error in BW is
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3.98 percent for a 6-resonator, closed-chain filter, it increases to 5.49, 11.32 and 17.49 percent, respectively, for, 8-, 12-
and 16-resonator filters. Similarly, the maximum error in center frequency increases 10-fold from 0.0235 percent (for a
6-resonator filter) to 0.2315 percent (for a 16-resonator filter). This, not surprisingly, reveals that higher-order filters are
more sensitive to variations amongst the resonators, due to the increased potential for such variations to occur.
4.2. Variations in k̂i, k̂c and m̂i

To buttress the results of the previous subsection, simulations were initiated that considered variations in
nondimensional mass and stiffness ratio up to 70.1 percent of the nominal values and variations in k̂c up to 720
percent. Fig. 19 shows the mean error in bandwidth (MEBW) for 6-resonator (a), and 16-resonator (b), closed-chain
filters with the aforementioned variations. For the 6-resonator filter, while the maximum error in BW is observed as high
as 77 percent, the error through most of the feasible design space is less than 30 percent. It is interesting to note
that in the neighborhood of design points satisfying k̂c � Q ¼ 1 (approximately), the difference between the
bandwidth of the nominal case BWnom and the mean bandwidth of the simulation iterations BW changes sign from
negative to positive, thus indicating a very low percentage error in bandwidth. Note that, similar trends are observed
for all n (from 6 through 16). As such, filters designed in this region are expected to be the least sensitive to variations
amongst the resonators. Fig. 20 shows the mean error and normalized standard deviation in center frequency
(respectively) for 6-resonator and 16-resonator, closed-chain filters for the variation levels delineated above. For the
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6-resonator filters, while the maximum error in CF is observed as high as 1.25 percent, the error through most of the
feasible design space is less than 0.06 percent. The error values and standard deviations are relatively higher for the
16-resonator filters.

4.3. Comparison with open-chain filters

Given that the absolute performance bounds developed in the preceding sections provide little insight on
the relative robustness of closed-chain filter architectures, comparisons are made between the mean errors in
bandwidth and center frequency associated with both open- and closed-chain filter architectures. As before, Monte Carlo
simulation are performed with random variations up to 70.1 percent in k̂i and m̂i, and up to 720 percent in k̂c , until
sufficient convergence has been achieved. The results of these simulations are presented here as the difference
between MEBW and MECF values for open- and closed-chain filters. Note that for the sake of completeness, the results
obtained for 4-resonator open-chain filters are compared with those for 4-resonator and 6-resonator, closed-chain filter
designs.

Fig. 21 presents the difference of mean errors and normalized standard deviations in bandwidth for open- and closed-
chain filters. The closed-chain filters are seen to be more robust through most of the feasible design space (indicated by the
positive difference) barring a thin strip of dark-blue region, as shown in Fig. 21. With the magnitude of variations
considered, the open-chain filter has a mean error as high as 304 percent in the common feasible design space. The
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normalized standard deviations, however, are of comparable magnitudes indicated by the positive as well as negative
values in the feasible design space.

Fig. 22 presents the difference of mean errors and normalized standard deviations in center frequency for open- and
closed-chain filters. The difference in mean errors is seen to be positive through most of the feasible design space
indicating that closed-chain filters are generally more robust than their open-chain counterparts, with respect to the center
frequencies also. The limited region with negative difference has relatively low magnitude (less than 0.006) compared to
the magnitude of positive difference. The values of standard deviations are also lower for the closed-chain filters through
most of the feasible design space, further establishing their superior robustness.

Collectively, Figs. 21 and 22 indicate that closed-chain filter designs are more robust to variations amongst the
resonators. Thus, in practice, filters based on these designs should require less frequency tuning or post-processing, as
compared to those designs based upon conventional, open-chain filter architectures.
5. Conclusion

In this paper, bandpass filters based on nontraditional, cyclic coupling architectures were modeled and analyzed.
Lumped-parameter modeling was used to capture the salient dynamics of open- and closed-chain filter designs which
were parameterized by a nondimensional coupling ratio and an isolated resonator quality factor. The response of filters
composed of identical resonators were then analyzed over a wide, yet realistic, range of these parameters, and the
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performance metrics associated with the closed-chain architecture were benchmarked against conventional, open-chain
filter designs. The closed-chain filters were found to be generally more selective, with steeper roll-offs, lower ripple
magnitudes and more symmetric passbands, as compared to the open-chain filter designs. Additionally, it was determined
that the passbands of open-chain filters operating at a majority of points in the feasible design space, failed to encompass
the entire resonance region. This led to poor selectivity, a nonsmooth transition band, and an asymmetric frequency
response. In contrast, higher-order, closed-chain filters were found to exhibit good selectivity metrics with lower ripple,
but at the expense of an increased insertion loss.

The effect of process-induced variation on the performance of closed- and open-chain filters was investigated by
introducing variations in the nondimensional coupling and damping parameters, and performing Monte Carlo
simulation throughout the feasible design space. The error in performance metrics, characterized by a mean
percentage error and normalized standard deviation in the bandwidth and center frequency, was generally found to be
lower for closed-chain filters as compared to open-chain filters, indicating that the architecture is likely more robust to
process-induced variations. Though implementable, closed-chain filters will likely require some degree of frequency
tuning, the above result is very useful in light of the cost and effort involved with post-processing in a mass production
setting.

Current efforts are aimed at developing device-specific multi-physics models, device fabrication, and experimental
validation. Fig. 23 highlights some of the initial filter designs under development. These filters utilize an out-of-plane
flexural mode of vibration and have center frequencies ranging from approximately 10 kHz to 5 MHz.
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